Learning from data streams using kernel least-mean-square with multiple kernel-sizes and adaptive step-size

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Kernel least mean square with adaptive kernel size

Kernel adaptive filters (KAF) are a class of powerful nonlinear filters developed in Reproducing Kernel Hilbert Space (RKHS). The Gaussian kernel is usually the default kernel in KAF algorithms, but selecting the proper kernel size (bandwidth) is still an open important issue especially for learning with small sample sizes. In previous research, the kernel size was set manually or estimated in ...

متن کامل

Kernel Least Mean Square Algorithm

A simple, yet powerful, learning method is presented by combining the famed kernel trick and the least-mean-square (LMS) algorithm, called the KLMS. General properties of the KLMS algorithm are demonstrated regarding its well-posedness in very high dimensional spaces using Tikhonov regularization theory. An experiment is studied to support our conclusion that the KLMS algorithm can be readily u...

متن کامل

Mean square convergence analysis for kernel least mean square algorithm

In this paper, we study the mean square convergence of the kernel least mean square (KLMS). The fundamental energy conservation relation has been established in feature space. Starting from the energy conservation relation, we carry out the mean square convergence analysis and obtain several important theoretical results, including an upper bound on step size that guarantees the mean square con...

متن کامل

Kernel least mean square algorithm with constrained growth

The linear least mean squares (LMS) algorithm has been recently extended to a reproducing kernel Hilbert space, resulting in an adaptive filter built from a weighted sum of kernel functions evaluated at each incoming data sample. With time, the size of the filter as well as the computation and memory requirements increase. In this paper, we shall propose a new efficient methodology for constrai...

متن کامل

Fixed budget quantized kernel least-mean-square algorithm

We present a quantization-based kernel least mean square (QKLMS) algorithm with a fixed memory budget. In order to deal with the growing support inherent in online kernel methods, the proposed method utilizes a growing and pruning combined technique and defines a criterion, significance, based on weighted statistical contribution of a data center. This method doesn’t need any apriori informatio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Neurocomputing

سال: 2019

ISSN: 0925-2312

DOI: 10.1016/j.neucom.2019.01.055